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Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions

Jianfeng Li,* Hongdong Zhang, and Feng Qiu
The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science,

Fudan University, Shanghai 200433, China

An-Chang Shi†

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1
(Received 22 February 2012; published 17 July 2013)

The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied
by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the
string method applied to continuum elastic membrane models. The results reveal that, besides the commonly
observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or
metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It
is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability
distribution of the different structures is in good agreement with available experiments.
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I. INTRODUCTION

Amphiphilic molecules such as lipids, surfactants, and
block copolymers dissolved in water can form various struc-
tured aggregates including spherical and cylindrical micelles,
disklike membranes, as well as open and closed vesicles [1–4].
The formation of, and transition between, these fascinating
structures have attracted tremendous attention [1–12]. In
particular, the disk-to-vesicle transition has been recently
examined experimentally and theoretically [13–21], motivated
by the rich physics contained in this simple system, as well
as by its biological implications and potential applications in
drug delivery [13,22].

It is generally believed that the competition between the
line tension of membrane edge and the bending rigidity of
the membrane dictates most of these shape transitions [1]. In
particular, the disk-to-vesicle transition presents a paradigm
for the study of the competition between edge energy and
bending energy of a finite membrane. When the edge energy
or line tension is large, closed vesicles that minimize the edge
energy at the cost of bending energy prevail, whereas the disks,
which minimize the bending energy at the cost of edge energy,
dominate the small line tension region. It is widely accepted
that there is no metastable (or stable) intermediate along the
disk-to-vesicle transition. However, previous experiments [13,
23,24] have revealed that intermediate open vesicles, in the
form of vesicles with small pores or bowl-shaped structures,
can be metastable or even stable. It is therefore desirable to
revisit the disk-to-vesicle transition to understand and resolve
this discrepancy.

In general, two major theoretical challenges for the study
of membrane deformation are as follows: (1) predicting the
equilibrium membrane shapes analytically or numerically
(e.g., Refs. [1,8,9]), and (2) obtaining transition pathways
connecting the different equilibrium shapes (e.g., Ref. [25]). In
the current study, we focus on transition pathways connecting
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the two simplest shapes, i.e., disk and vesicle, of a finite mem-
brane. In the context of the classic continuum elastic membrane
model [8–10], this transition has been previously studied either
by solving the shape equations [9] to obtain the minima (or
maxima) along the transition pathway, or by assuming some
particular intermediate shapes along the transition pathways to
examine the transitions between the different shapes [5–7,26].
For the disk-to-vesicle transition, solving the shape equations
of an open membrane with a free edge is a highly nontrivial
problem. The free-boundary shape equation related to open
membranes has been studied by a large number of researchers
[26–30]. Recently, Umeda et al. [20] applied the Tu and
Ou-Yang’s method [28,29] to the disk-to-vesicle transition.
By including the area difference between the two monolayers,
or leaflets, of the bilayer membrane energy into the Helfrich
energy, they obtained various metastable or stable intermediate
open vesicles. Therefore, they had resolved, to some extent, the
problem of missing metastable intermediate states observed in
the experiments [13,23,24]. On the other hand, the solutions
of the shape equation correspond to the minima or maxima
of the energy landscape. Information about the transition
pathway itself, which connects these extrema, is still missing.
A previous study of the transition pathway is carried out
by assuming that the intermediate shapes of the membrane
are a series of spherical caps [5–7,26]. This spherical-cap
model (SCM) essentially assumes that the reaction coordinate
of the disk-to-vesicle transition is specified by the spherical
caps. This simple model captures some important features
of the disk-to-vesicle transition. However, this SC model
failed to predict the metastable intermediate states observed
in experiments. Furthermore, within the framework of the
Helfrich model, Tu [31] proved that the spherical cap cannot
be a stable open vesicle, thus it is desirable to go beyond the
spherical-cap approximation. It should also be noticed that
most of the theoretical studies of membrane shape transitions
are based on the linear elastic (Helfrich) model, in which
the contribution from the higher-order terms of the bending
energy is neglected. On the other hand, recent experiments and
theoretical analysis [32–35] have demonstrated that the higher-
order contributions to the elastic bending energy of bilayer
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membranes can be significant and thus cannot be ignored under
certain circumstances. In particular, it is important to examine
whether the higher-order blending energy contributions could
stabilize some intermediate states.

The key to thoroughly understand the disk-to-vesicle
transition is to construct the most probable transition pathway
connecting the two structures. According to large deviation
theory, the most probable transition path connecting two stable
states is a minimum energy path (MEP) of the free-energy
(F ) landscape of the system. Mathematically, a MEP is a
one-dimensional path, φ, in the configuration space, which
is characterized by a vanishing normal component of the free-
energy gradient on the path, (∇F )⊥ (φ) = 0. Geometrically,
the MEP can be viewed as a one-dimensional curve or
string in the configuration space [36]. Specifically for the
disk-to-vesicle transition, a MEP is a string in the shape space
connecting the disk and vesicle states. It has been shown
that the MEP can be computed using a dynamical evolution
method, or the string method [36,37]. The string method has
been proven to be an effective technique for the construction of
MEPs in various systems including membrane adhesion [38],
capillary condensation [39], vesicle pore formation [40], and
phase transitions of block copolymers [41,42]. In the current
work, the MEP of the disk-to-vesicle transition is constructed
using the string method applied to the elastic membrane model
of symmetric bilayers [43]. The MEP provides full information
about the transitions between the two stable states, including
intermediate metastable or stable open membrane shapes.
Furthermore, the MEP can be used to estimate the probability
distribution of these intermediates.

II. METHODOLOGY

In the classical continuum membrane model [8–10], a
bilayer membrane is modeled by a smooth surface [44]. For the
disk-to-vesicle transition, the free energy of an open membrane
consists of the bending energy of the surface (S) and the edge
energy of the open boundary (∂S),

F =
∫

S

(
κ

2
H 2 + κGK + κ1H

4 + κ2K
2 + κ3H

2K

)
dA

+
∫

∂S

γ dl, (1)

where γ is the line tension, H the mean curvature, and K the
Gaussian curvature. κ , κG, and κi are the bending, Gaussian,
and fourth-order moduli, respectively. It should be noticed that
the commonly used Helfrich energy only contains terms up to
the second order [8]. The higher-order terms are kept here
for generality [32–35]. We will also examine their effects on
the stability of the intermediate open vesicles. In the parallel
surface model, the higher-order terms come from Taylor
expansion of the bilayer energy [45]. Since only symmetrical
bilayer membranes are considered [43], odd-order terms are
excluded in F . For simplicity, the membrane shape is assumed
to be axisymmetric and the membrane area is kept constant
during the transformation. Under these assumptions, the free
energy of the membrane can be cast in the configuration
space specified by the variable φ = [r(s),∂z(s)/∂s], where
s (s ∈ [0,1]) is a parameter with s = 0 corresponding to the

bottom point and s = 1 the edge point of the membrane. The
variables r(s) and z(s) measure the distances from the point s
to the axial and bottom plane of the membrane, respectively
[Fig.1(II)]. In terms of φ, the area element, mean, and Gaussian
curvatures can be expressed as dA = 2πr(r ′2 + z′2)1/2ds,
H = c1 + c2, and K = c1c2, with the two principal curvatures
specified by

c1 = −z′

r
√

r ′2 + z′2 , (2)

c2 = r ′′z′ − r ′z′′

(r ′2 + z′2)3/2
, (3)

where the derivatives with respect to the variable s are denoted
by X′ ≡ ∂X/∂s. The string method of MEP starts from an
initial string, φ(s,α; t)|t=0, which is parametrized by a variable
α (α ∈ [0,1]) such that α = 0 corresponds to the disk and α =
1 the vesicle. This string variable α can be taken as the radius
of the open edge, α = 1 − r(1)/R0. In order to obtain the
MEP, the initial string is evolved according to the dissipative
dynamic equation [36,37],

∂φ

∂t
= − (∇F ) (φ) + η�τ + λ�v, (4)

where �τ is the unit tangent vector of φ defined by �τ =
∂αφ/|∂αφ| with ∂αφ ≡ ∂φ/∂α, |∂αφ| ≡

√∫
(∂αφ)2dA, and

�v = (
r ′,z′). The Lagrange multiplier η is determined by the

parametrization of the string, while λ ensures a constant
membrane area. In practice, explicit evaluation of the Lagrange
multiplier η is not required in the numerical implementation.
Instead an equal arc length parametrization of the string is
enforced by using the interpolation method proposed by E
et al. [37]. The gradient of the energy landscape (∇F ) (φ)
is evaluated numerically based on the discrete variational
principles [46,47] (see the Appendix). A string is represented
by 100 structures or 100 shapes in the configuration space. The
initial string is taken as a series of spherical caps. Furthermore,
each shape in the calculation is represented by 90 discrete
points, or the variable s is discretized into 89 segments. The
MEP of the transition is obtained when the evolution equation
reaches a steady state, φ(s,α)MEP = φ(s,α; t)|t=∞. In what
follows we present results on the disk-to-vesicle MEPs for
two models, the linear Helfrich model with κ1 = κ2 = κ3 = 0,
and the nonlinear Helfrich model with some specific choices
of nonzero κ1, κ2, and κ3. These MEPs are then used to search
for stable and metastable intermediate states. The probability
of finding these intermediates (bowl-like membranes and
vesicles with small pore) is estimated by noticing that, with
the availability of the MEP, the probability of finding a
membrane shape with string parameter α is proportional to
exp {−F (α)/kBT } with F (α) the free energy of the MEP.

III. RESULTS

We first examine the case of the linear Helfrich model
with κ1 = κ2 = κ3 = 0 [Eq. (1)]. Since the energy can be
scaled by the bending modulus κ , the results are shown with
a fixed κ and varying γ and κG (Fig. 1). The first obvious
result from the MEP shown in Fig. 1 is that the spherical
cap model [48] overestimates the MEP and spherical caps are
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FIG. 1. (Color online) A typical MEP for κi = 0. (I) Free energy
(solid line) of the MEP at γR0

4κ
= 0.8 and κG = 0. The dashed line is

obtained by the spherical-cap model. (II) Five representative shapes
along the MEP with (a) corresponding to the maximum and (b) to the
metastable vesicle pore on the MEP. These five are at α = 0, 0.03,
0.25, 0.70, 0.93, respectively.

clearly not representation of the intermediates on the MEP.
Indeed, we have numerically shown that a spherical cap is
not a stable shape along the transition, in agreement with the
earlier study of Tu [31] within the framework of the Helfrich
model. Furthermore, the string method predicts a metastable
open vesicle with a small pore along the transition. The depth
of the potential well is about 0.06κ ≈ 1.8kBT if we take
κ = 1.2 × 10−19 J and γR0/4κ = 0.8 [13]. This metastable
intermediate may correspond to the transient vesicle pores
observed in the viscous solutions by Saito et al. [23].
Metastable open vesicles have been also obtained by solving
the shape equations (see Umeda et al. [20]). The shape phase
diagram of the transition can be constructed by examining the
extrema of the MEP (Fig. 2). It is observed that the metastable
vesicles with a small pore exist only in a small region labeled
“D + Pore” shown in Fig. 2. The phase boundary between
“D + V” and “V” defines the critical line tension of the disk,
beyond which the disk becomes absolutely unstable and it will
transform into vesicle spontaneously. For the linear Helfrich
model, this phase boundary can be obtained analytically by
solving the free-boundary shape equations and it is determined
by a transcendental equation [28],

2γ̃ 1/2
c J0

(
2γ̃ 1/2

c

)/
J1

(
2γ̃ 1/2

c

) = −κG/κ, (5)

where J0 and J1 are the zeroth- and first-order Bessel functions
of the first kind, and γ̃ = γR0/4κ is the reduced line tension.
Clearly, the critical value depends on the Gaussian modulus κG.

FIG. 2. (κG,γ ) phase diagram for κi = 0 showing the stability
region of different shapes with the corresponding MEP schematics.
The stable or metastable shapes are indicated by “D” (disk), “V”
(vesicle), and “pore” (vesicle with a pore with α > 0.5). The insets
illustrate the energy profile in each phase region.

FIG. 3. (Color online) A typical MEP for κ2 �= 0 and κ1 = κ3 =
0. Left: Free energy of the MEP at γR0

4κ
= 1.8 and κ2

κR2
0

= 0.25. Right:

Five typical shapes on the MEP showing in (I) at α = 0, 0.03, 0.25,
0.53, 0.95. Shape (b) corresponds to the maximum of the MEP,
while the bowl-like membrane (a) and vesicle with a pore (c) are
the metastable and stable states, respectively.

In particular, when κG = 0, γ̃c = 1.445. In agreement with this
exact result, the string method gives γ̃c = 1.44. On the other
hand, the spherical cap model (SCM) [26] predicts γ̃c = 2.

For the case of the nonlinear membrane model with a
particular choice of κ1 = κ3 = 0 and κ2 �= 0 [Eq. (1)], the
transition behavior becomes more complex. Figures 3(I) and
3(II) show the MEP and several open membrane shapes at
κ2/R

2
0κ = 0.25 and γ̃ = 1.5. It is interesting to notice that,

with this set of model parameters, the MEP predicts the
existence of a metastable bowl-like membrane and a stable
vesicle with a small pore. The difference between the minimum
energies corresponding to these two intermediates is small,
indicating that they may coexist under some conditions (also
see Fig. 5). The shapes of these open membranes are obviously
different from those of the linear case (κ2 = 0, Fig. 1). In the
case of the linear membrane model, the membrane edges tend
to curl up (c2 > 0) because the membranes tend to maintain a
zero mean curvature near the edge. For the nonlinear model,
the membrane edges are more straight (c2 ≈ 0) because of the
energetic penalty of κ2K

2. This phenomenon can be better
understood by examining one of the boundary conditions in
the free-boundary shape equations [28],

[κ(c1 + c2) + c1(κG + 2κ2c1c2)]s=1 = 0. (6)

As can be seen from this boundary condition at the open
edge, for the linear case we have c2 = −(κ + κG)c1/κ > 0,
because the principal curvature c1 perpendicular to the axial
direction is mostly negative. Note that c2 > 0 corresponds to a
curling-up edge while c2 = 0 leads to a straight edge (along the
axial direction). Therefore a negative Gaussian modulus tends
to flatten the edge (in particular, c2 = 0 if κG = −κ); this
phenomenon has been also noticed by Yao et al. [12]. For the
nonlinear case, c2 = −(κ + κG)c1/(κ + κ2c

2
1), implying that

the principal curvature c2 will be small for a large κ2, i.e., a
big κ2 will also flatten the membrane edge. It is interesting
to point out that the membrane shapes observed in the
experiments [13] are closer to those of the nonlinear case (κ2 �=
0), implying that the higher-order curvature energies may
contribute significantly in this case. Also by comparing these
shapes, we have confirmed in theory that the experimentally
observed intermediates mostly follow the MEPs. More results
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FIG. 4. Upper: (κG,γ ) phase diagram at κ2
κR2

0
= 0.25 and κ1 = κ3 = 0. Lower: The phase diagram at 16κ1

κR2
0

= 0.25 and κ2 = κ3 = 0; a

zoom-in view of the shadow region of the phase diagram is shown on the lower left. The stable or metastable shapes are indicated by “D”
(disk), “V” (vesicle), “pore” (vesicle with a pore with α > 0.5), and “Bowl” (α < 0.5). The insets illustrate the energy profile in each phase
region.

of the present case are summarized in the phase diagram
(the upper panel in Fig. 4). The MEP depicted in Fig. 3
corresponds to a point in the phase region “Bowl + Pore.”
Besides “Bowl + Pore” some bowl-like membranes in the
“Bowl + V” region are stable while vesicles with the pore
in the “Pore” are stable. Although the theory predicts the
existence of open vesicles as stable and metastable states
of a finite membrane, care must be taken when making
direct comparison of the phase diagram shown in Fig. 4
with experiments. For example, the reduced Gaussian modulus
(κG/κ) of lipid membranes is normally about −1, while the
phase diagram of Fig. 4 predicts that open vesicles with a small
pore can be stable for κG/κ > −0.75 with κ2/κR2

0 = 0.25.
On the other hand, it is interesting to notice that the Gaussian
modulus κG can be mediated by the spontaneous curvature of
the monolayer [45]. In order to make a detailed comparison
with experiments, accurate values of the elastic moduli are
desirable.

The effects of the other nonlinear terms have been also
examined by computing the MEPs for nonzero κ1. The results
(see the lower panels in Fig. 4) reveal that the κ1H

4 term has
a similar effect as that of the κ2 term. That is, a positive κ1

will stabilize the bowl-like membranes. On the other hand, for
the cases of a negative κ1 or a negative κ2 or any nonvanishing
κ3 alone (with κ1 = κ2 = 0), a smooth membrane would not
be stable because the higher-order energy terms of these

three cases are not positive definite. In general, the positive-
definite condition is κ1 + κ2 � 0 and 4κ1κ2 � κ2

3 , and there are
many combinations of κ1, κ2, and κ3 satisfying the positive-
definite conditions. For a given set of the higher-order
modulus, it is straightforward to examine their transition
pathways using the string method.

An estimation of the probability distribution function
(PDF) of the intermediate states requires the knowledge
of the entire transition pathway. To match the experiment
parameters [13], we set κ = 1.2 × 10−19 J, κG = 0, R0 =
10 μm, and κ2/R

2
0κ = 0.25; the value of γ obeys the normal

distribution with a standard deviation �γ = 0.02 pN. We
explore three typical mean line tensions, 0.062, 0.094, and
0.12 pN, respectively (the corresponding γ̃ ’s are 1.29, 1.96,
and 2.5). The PDFs are shown in the lower panels of Fig. 5.
Based on these PDFs, the probabilities of finding the four
typical shapes (disk, bowl, vesicle with a pore, and closed
vesicle) are integrated and presented in the upper panels. For
a large value of γ (0.12 pN), almost no open membranes
are observed. As the line tension is decreased from 0.094 to
0.062 pN, the percentage of the open membranes is predicted
to rise from 17.1% to 73.2%. These results are consistent
with a recent experiment [13], in which photosensitive
molecules (KAON12) are used to reduce the line tension
of the membrane in order to stabilize bowl-like and cuplike
membranes.
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FIG. 5. (Color online) Upper: Probabilities of finding the disks
(α < 0.03), bowls (0.03 < α < 0.5), vesicles with a pore (0.5 < α <

0.96), and vesicles (α > 0.96) in the solution of lipids, estimated
by the string method. The + data points are taken from Fig. 2 in
Ref. [13], with 〈γ 〉 = 0.062 pN corresponding to the case of 40%
KAON12 and 0.094 pN to 35% KAON12, respectively. Lower: The
PDFs corresponding to the upper ones.

For simplicity, our calculations were carried out for the
cases with zero spontaneous curvature. For membranes with
nonzero spontaneous curvatures, it is expected that interme-
diate open vesicles may become stable states, similar to the
cases of area-difference models studied by Umeda et al. [20],
which exhibit stable open vesicles under certain conditions. In
the current work we focus on the methodology of finding the
transition pathways between the disk and vesicle states and
the effect of the higher-order elastic bending terms, and we
leave the case of nonzero spontaneous curvature to a future
study.

IV. CONCLUSION

In summary, we have examined the disk-to-vesicle tran-
sitions of finite membranes by constructing the minimum
energy path (MEP) connecting these two states. Specifically,
the MEPs are obtained by applying the string method to
the classical linear and nonlinear elastic membrane models.
Membrane shapes along the MEP are used to predict transition
pathways and intermediate states from disks to vesicles. The
minima along the MEP correspond to stable and metastable
intermediate states between the disks and vesicles. The predic-
ted intermediate shapes, in the form of a bowl-like shape and
a vesicle with a small pore, along the transition pathways
are in good agreement with the experimentally observed
intermediates. In the case of the linear elastic (Helfrich)
model, only metastable open vesicles with a small pore are
predicted by the MEP. When nonlinear elastic curvature energy
is included in the membrane model, both stable bowl-shaped
membranes and vesicles with a small hole are obtained. These
intermediate open structures can be stabilized by nonlinear
elastic terms in the membrane energy. Finally, the MEP can
be used to estimate the probability distribution of the different
intermediate states. The predicted shape sequence along the
MEP can be used to understand the nature of disk-to-vesicle
transitions of open membranes. Furthermore, although the

method is developed for the disk-to-vesicle transition, in
principle it can be applied to the study of the transitions among
other two-dimensional structures, such as vesicles with many
pores and membrane tubes or torus. Finally, we would like to
emphasize that, since the theory is based on the continuum
elastic model of membranes, the results are relevant to generic
amphiphilic systems such as lipids and surfactants.
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APPENDIX: EVALUATION OF THE GRADIENT (∇F)(φ)

In this Appendix we provide some details of the numerical
procedures to evaluation of the functional gradient of the free
energy (∇F ) (φ). Mathematically (∇F ) (φ) is the variational
derivative of the free energy F with respect to the variable
φ. For an open membrane with rotational symmetry about the
z axis, a naive discretization of the space will encounter a sin-
gularity at the central bottom point (z = r = 0). Furthermore,
care must be taken to treat the boundary condition at the free
edge of the membrane.

Based on the discrete variational principle [46,47], a
discretization scheme can be developed for the open mem-
brane problem. This scheme preserves the symmetry of the
free-energy functional. With this scheme, the singularity at
the bottom of the membrane can be removed by a proper
formulation of the discrete free-energy density at this point
and the boundary conditions at the free edge are automatically
satisfied. In our numerical calculations, we discretize the free
energy (action) first and then perform the variation of the dis-
crete energy to obtain the discrete gradient (∇F ) (φ). This pro-
cedure ensures that the symmetry of the system is preserved.
Symmetric schemes also lead to better numerical stability.

For an axisymmetric open membrane, its shape is described
by the position of the membrane R(s) = [r(s),z(s)]. In the
discretized description, the membrane shape is represented by
R(k) = [r(k),z(k)] with k = 0,1, . . . ,N . It is convenient to
define the following variables,

ζ (k) ≡ [z(k) − z(k − 1)]/�s,

rs(k) ≡ [r(k) − r(k − 1)]/�s,

ζs(k) = [ζ (k) − ζ (k − 1)]/�s.

These quantities near the bottom point (i.e., k = −1,0,1) are
specified by the following symmetric scheme,

r(0) = 0, z(0) = 0, z(−1) = z(1),

r(−1) = −r(1), rs(0) = 0, ζ (0) = 0.

The length element
√

r ′2 + z′2, area element dA, and
curvature of the membrane can be expressed in terms of these
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discretized variables,

D(k) = {[r(k + 1) − r(k − 1)]2

+ [z(k + 1) − z(k − 1)]2}1/2/2�s,

S(k) = {[3r(k) + r(k − 1)]d(k)

+ [3r(k) + r(k + 1)]d(k + 1)}�s/8,

c1(k) = −ζ (k) + ζ (k + 1)

2r(k)D(k)
,

c2(k) = [ζ (k)rs(k + 1) − ζ (k + 1)rs(k)]

d(k)d(k + 1)D(k)�s
,

where d(k) = [rs(k)2 + ζ (k)2]1/2. The curvatures at the bottom
point are specified by c1(0) = c2(0) = −2ζ (1)/d(1)2. It should
be noticed that, although the variables rs(k) and ζ (k) are not
symmetric about k, the discrete expressions of the area element
and principal curvatures are symmetric about k. The discretiza-
tion of c1 is obtained by interpolating the three points k − 1, k,
and k + 1 with an arc and then calculating the corresponding
inverse radius as the principal curvature. The mean curvature
and Gaussian curvature are expressed in terms of c1 and c2,
i.e., H = c1 + c2 and G = c1c2. Finally the energy functional
F is obtained in terms of these discretized variables,

F =
k=N−1∑

k=0

2πf (H,K)S(k) + 2πγ r(N ), (A1)

where f (H,K) = κ
2 H 2 + κGK + κ1H

4 + κ2K
2 + κ3H

2K .

The expression of the discretized energy functional
[Eq. (A1)] allows the numerical calculation of the discrete
variational derivatives [49],

δF

δr(k)
= lim

a→0

F [r(k) + a] − F [r(k)]

a
, (A2)

δF

δζ (k)
= lim

a→0

F [ζ (k) + a] − F [ζ (k)]

a
, (A3)

where a is a sufficiently small real number and k = 0,1, . . . ,N .
It should be noticed that the discrete variational

derivative can be obtained analytically from the energy
functional,

δF

δr(k)
= ∂F (r(1),r(2), . . . ,r(N ))

∂r(k)
, (A4)

with a similar expression for δF/δζ (k). In practice, obtaining
explicit expressions of these derivatives are quite tedious.
In our calculations we employed the numerical variation
scheme [Eqs. (A2) and (A3)] to calculate these functional
derivatives.

Finally we would like to point out that the bound-
ary conditions at the free edge are automatically satisfied
in our discretization expressions. Specifically the deriva-
tives at the free edge are given by δF/δr(N − 1) = 0,
δF/δr(N ) = 0, and δF/δζ (N ) = 0, corresponding to the
three boundary conditions in the shape equations of open
membranes [20,27–29].
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[2] S. Šegota and D. Težak, Adv. Colloid Interface Sci. 121, 51
(2006).

[3] E. W. Kaler, A. K. Murthy, B. E. Rodriguez, and J. A. N.
Zasadzinski, Science 245, 1371 (1989).

[4] M. Gradzielski, Curr. Opin. Colloid Interface Sci. 16, 13 (2011).
[5] D. D. Lasic, Biochim. Biophys. Acta 692, 501 (1982).
[6] P. Fromherz, Chem. Phys. Lett. 94, 259 (1983).
[7] D. D. Lasic, Biochem. J. 256, 1 (1988).
[8] W. Helfrich, Z. Naturforsch. C 28, 693 (1973).
[9] O.-Y. Zhong-can and W. Helfrich, Phys. Rev. A 39, 5280

(1989).
[10] U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev. A 44, 1182

(1991).
[11] S. Svenson, Curr. Opin. Colloid Interface Sci. 9, 201 (2004).
[12] Z. Yao, R. Sknepnek, C. K. Thomas, and M. Olvera de la Cruz,

Soft Matter 8, 11613 (2012).
[13] T. Hamada, R. Sugimoto, M. C. Vestergaard, T. Nagasaki, and

M. Takagi, J. Am. Chem. Soc. 132, 10528 (2010).
[14] M. P. Nieh, V. A. Raghunathan, S. R. Kline, T. A. Harroun, C. Y.

Huang, J. Pencer, and J. Katsaras, Langmuir 21, 6656 (2005).
[15] B. Deme, M. Dubois, T. Gulik-Krzywicki, and T. Zemb,

Langmuir 18, 997 (2002).
[16] J. Leng, S. U. Egelhaaf, and M. E. Cates, Biophys. J. 85, 1624

(2003).
[17] J. Gummel, M. Sztucki, T. Narayana, and M. Gradzielski, Soft

Matter 7, 5731 (2011).

[18] G. J. A. Sevink and A. V. Zvelindovsky, Macromolecules 38,
7502 (2005).

[19] X. He and F. Schmid, Phys. Rev. Lett. 100, 137802 (2008).
[20] T. Umeda, Y. Suezaki, K. Takiguchi, and H. Hotani, Phys. Rev.

E 71, 011913 (2005).
[21] W. Shinoda, T. Nakamura, and S. O. Nielsen, Soft Matter 7,

9012 (2011).
[22] T. M. Allen and P. R. Cullis, Science 303, 1818 (2004).
[23] A. Saitoh, K. Takiguchi, Y. Tanaka, and H. Hotani, Proc. Natl.

Acad. Sci. USA 95, 1026 (1998).
[24] F. Nomura, M. Nagata, and T. Inaba, Proc. Natl. Acad. Sci. USA

98, 2340 (2001).
[25] H. W. G. Lim, M. Wortis, and R. Mukhopadhyay, Proc. Natl.

Acad. Sci. USA 99, 16766 (2002).
[26] D. H. Boal and M. Rao, Phys. Rev. A 46, 3037 (1992).
[27] R. Capovilla, J. Guven, and J. A. Santiago, Phys. Rev. E. 66,

021607 (2002).
[28] Z. C. Tu and Z. C. Ou-Yang, Phys. Rev. E 68, 061915

(2003).
[29] Z. C. Tu and Z. C. Ou-Yang, J. Phys. A: Math. Gen. 37, 11407

(2004).
[30] Y. Yin, J. Yin, and D. Ni, J. Math. Biol. 51, 403 (2005).
[31] Z. C. Tu, J. Chem. Phys. 132, 084111 (2010).
[32] M. I. Katsnelson and A. Fasolino, J. Phys. Chem. B 110, 30

(2006).
[33] O. V. Manyuhina et al., Phys. Rev. Lett. 98, 146101 (2007).
[34] O. V. Manyuhina, J. J. Hetzel, M. I. Katsnelson, and A. Fasolino,

Eur. Phys. J. E 32, 223 (2010)

012719-6

http://dx.doi.org/10.1016/j.cis.2006.01.002
http://dx.doi.org/10.1016/j.cis.2006.01.002
http://dx.doi.org/10.1126/science.2781283
http://dx.doi.org/10.1016/j.cocis.2010.07.005
http://dx.doi.org/10.1016/0005-2736(82)90404-7
http://dx.doi.org/10.1016/0009-2614(83)87083-3
http://dx.doi.org/10.1103/PhysRevA.39.5280
http://dx.doi.org/10.1103/PhysRevA.39.5280
http://dx.doi.org/10.1103/PhysRevA.44.1182
http://dx.doi.org/10.1103/PhysRevA.44.1182
http://dx.doi.org/10.1016/j.cocis.2004.06.008
http://dx.doi.org/10.1039/c2sm26608c
http://dx.doi.org/10.1021/ja103895b
http://dx.doi.org/10.1021/la0508994
http://dx.doi.org/10.1021/la010723b
http://dx.doi.org/10.1016/S0006-3495(03)74593-7
http://dx.doi.org/10.1016/S0006-3495(03)74593-7
http://dx.doi.org/10.1039/c1sm05354j
http://dx.doi.org/10.1039/c1sm05354j
http://dx.doi.org/10.1021/ma0506740
http://dx.doi.org/10.1021/ma0506740
http://dx.doi.org/10.1103/PhysRevLett.100.137802
http://dx.doi.org/10.1103/PhysRevE.71.011913
http://dx.doi.org/10.1103/PhysRevE.71.011913
http://dx.doi.org/10.1039/c1sm05404j
http://dx.doi.org/10.1039/c1sm05404j
http://dx.doi.org/10.1126/science.1095833
http://dx.doi.org/10.1073/pnas.95.3.1026
http://dx.doi.org/10.1073/pnas.95.3.1026
http://dx.doi.org/10.1073/pnas.041419098
http://dx.doi.org/10.1073/pnas.041419098
http://dx.doi.org/10.1073/pnas.202617299
http://dx.doi.org/10.1073/pnas.202617299
http://dx.doi.org/10.1103/PhysRevA.46.3037
http://dx.doi.org/10.1103/PhysRevE.66.021607
http://dx.doi.org/10.1103/PhysRevE.66.021607
http://dx.doi.org/10.1103/PhysRevE.68.061915
http://dx.doi.org/10.1103/PhysRevE.68.061915
http://dx.doi.org/10.1088/0305-4470/37/47/010
http://dx.doi.org/10.1088/0305-4470/37/47/010
http://dx.doi.org/10.1007/s00285-005-0330-x
http://dx.doi.org/10.1063/1.3335894
http://dx.doi.org/10.1021/jp0558021
http://dx.doi.org/10.1021/jp0558021
http://dx.doi.org/10.1103/PhysRevLett.98.146101
http://dx.doi.org/10.1140/epje/i2010-10631-2


EMERGENCE AND STABILITY OF INTERMEDIATE OPEN . . . PHYSICAL REVIEW E 88, 012719 (2013)

[35] J. F. Li, K. A. Pastor, A.-C. Shi, F. Schmid, and J. J. Zhou, Phys.
Rev. E 88, 012718 (2013).

[36] W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301
(2002).

[37] W. E, W. Ren, and E. Vanden-Eijnden, J. Chem. Phys. 126,
164103 (2007).

[38] C.-Z. Zhang and Z.-G. Wang, Phys. Rev. E 77, 021906 (2008).
[39] C. Qiu, T. Qian, and W. Ren, J. Chem. Phys. 129, 154711 (2008).
[40] C. L. Ting, D. Appelo, and Z.-G. Wang, Phys. Rev. Lett. 106,

168101 (2011).
[41] L. Lin, X. Cheng, W. E, A.-C. Shi, and P. Zhang, J. Comput.

Phys. 229, 1797 (2010).
[42] X. Cheng, L. Lin, W. E, P. Zhang, and A.-C. Shi, Phys. Rev.

Lett. 104, 148301 (2010).
[43] A symmetrical bilayer is referred to as a bilayer with the identical

chemical compositions and zero area difference about its two

leaflets. Because the chemicals can diffuse across the membrane
edge, therefore in the long term the bilayer will eventually
become symmetrical.

[44] The continuum membrane theory cannot, in principle, consider
the lipid rearrangements or membrane fusions related to vesicle
pore formations. Luckily, the rearrangement process in the
vesicle pore formation has been recently studied by the string
method applied to the self-consistent field theory [40].

[45] U. S. Schwarz and G. Gompper, Langmuir 17, 2084 (2001).
[46] J. E. Marsden and M. West, Acta Numer. 10, 357 (2001)
[47] J. F. Li, H. D. Zhang, P. Tang, F. Qiu, and Y. L. Yang, Macromol.

Theory Simul. 15, 432 (2006).
[48] The free energy of the spherical cap model can be expressed

in terms of the edge angle θ as 4π [(1 + κG/κ)(1 − cos θ ) +
2γ̄ sin θ/

√
2 − 2 cos θ ] with γ̄ = γR0/4κ .

[49] K. A. Brakke, Exp. Math. 1, 141 (1992).

012719-7

http://dx.doi.org/10.1103/PhysRevE.88.012718
http://dx.doi.org/10.1103/PhysRevE.88.012718
http://dx.doi.org/10.1103/PhysRevB.66.052301
http://dx.doi.org/10.1103/PhysRevB.66.052301
http://dx.doi.org/10.1063/1.2720838
http://dx.doi.org/10.1063/1.2720838
http://dx.doi.org/10.1103/PhysRevE.77.021906
http://dx.doi.org/10.1063/1.2996516
http://dx.doi.org/10.1103/PhysRevLett.106.168101
http://dx.doi.org/10.1103/PhysRevLett.106.168101
http://dx.doi.org/10.1016/j.jcp.2009.11.009
http://dx.doi.org/10.1016/j.jcp.2009.11.009
http://dx.doi.org/10.1103/PhysRevLett.104.148301
http://dx.doi.org/10.1103/PhysRevLett.104.148301
http://dx.doi.org/10.1021/la0013805
http://dx.doi.org/10.1017/S096249290100006X
http://dx.doi.org/10.1002/mats.200600012
http://dx.doi.org/10.1002/mats.200600012
http://dx.doi.org/10.1080/10586458.1992.10504253



